
ONLINE GAME STORE 
 

Requirements – Epic 3 – Payment methods 

 

Extend the functionality of the Game Store by adding the ability to buy a 

game.  

 

The system should support the following features: 
• Add game to cart. 

• Get games from cart. 

• Get orders. 

• Get payment methods. 

• Perform payment with the selected method. 

 

Entities 

Order 

• Id: Guid, required, unique 

• Date: DateTime, optional 

• CustomerId: Guid, required 

• Status: Enum, required 

 

OrderGame 

• OrderId: Guid, required 

• ProductId: Guid, required 

• Price: Double, required 

• Quantity: Int, required 

• Discount: Int, optional 

Product-Order combinations are unique. 

 

Additional Requirements 
Payment 

Create a single endpoint for payment independently from the selected 
method. 
If the payment is processed successfully then the order must be marked 
as paid otherwise cancelled 

 

 

https://epam.sharepoint.com/:w:/r/sites/RDUA.NETIntLabEastTeam/Shared%20Documents/BA/FINAL/Task%203.docx?d=wfef7897f69e248ff89909a6a557937b0&csf=1&web=1&e=MdQiqH


Payment Methods 

Allowed payment methods: “Bank”, “IBox terminal”, “Visa”.  

Only one method can be applied to an order to get paid. 

Each payment method contains a little picture (open-source pictures), 

title, short description. 

 

Customer 

Since we don’t have users yet, for Customer Id use a stub value. 

 

Bank payment date of validity 

The date of validity – how long the invoice is valid. The value should be 

configurable by application settings. 

 

Order limitations 

 User cannot order more games than available in the stock. 

 

Order statuses 

Any order has the next possible statuses: 

• Open – games are in the cart. 

• Checkout – payment is started. 

• Paid – payment is performed successfully. 

• Cancelled – payment is performed with errors. 

 

 

Endpoint specifications: 

US1E3 

 Add game in the cart endpoint 

Url: /games/{key}/buy  
Type: POST 
Limitation: if the endpoint is called for the game which is already in the 

cart, then just increment the quantity  

Response: Success status code 

 

 Delete game from cart endpoint 

Url: /orders/cart/{key}  
Type: DELETE 
Response: Success status code 



 

 

US2E3 

 Get paid and cancelled orders endpoint. 

 Url: /orders 

 Type: GET 

 Response example: 

 
 

 Get order by id endpoint. 

 Url: /orders/{id} 

 Type: GET 

 Response example: 

 
 

US3E3 

Get order details endpoint. 
Url: /orders/{id}/details 
Type: GET 
Response Example: 

  
 

 



US4E3 

Get cart endpoint 

Url: /orders/cart 

Type: GET 

Hint: Cart is an order in the status Open, if such an order is not present 

in the database this should be created automatically during adding the 

first game to the cart. As a result, if the last game is deleted from the 

cart then the open order should be deleted automatically. 

Response example: 

 
 

US5E3 

 Get payment methods endpoint 

 Url: /orders/payment-methods 

 Type: GET 

 Response Example: 

 
  

 

 

 

 

 



US6E3 

‘’Bank’’ payment 

Url: /orders/payment 

Type: POST 

Request: {"method":"Bank"} 

Flow: the system should return generated invoice file for download: 

File type: PDF 

The file content: 

• User ID 

• Order ID 

• Creation date 

• The date of validity – how long is the invoice is valid.  

• Sum 

 

US7E3 

“IBox terminal” payment 

Url: /orders/payment 

Type: POST 

Request: {"method":"IBox terminal"} 

Integration: Integration with payment microservice is required 

Flow: The system should handle requests with an IBox payment. 

Response: should contain a user Id, invoice number (order ID), and sum. 

Response Example: 

{ 

  "userId": "24967e32-dec1-47b5-8ca6-478afa84c2be", 

  "orderId": "7dce8347-4181-4316-9210-302361340975", 

  “paymentDate”: “2023-11-18T11:03:26.0575052+02:00”, 

  "sum": 100 

} 

 

 

 

 

 

 

 

 



US8E3 

“Visa” payment 

Url: /orders/payment 

Type: POST 

Request:  

{ 

  "method": "Visa", 

  "model": { 

    "holder": "Vitalii", 

    "cardNumber": "123321122344231", 

    "monthExpire": 10, 

    "yearExpire": 2030, 

    "cvv2": 111 

  } 

} 

 

Integration: Integration with payment microservice is required 

Flow: The system should handle requests with card holder’s name, card 

number, Date of expiry (month and year), CVV2/CVC2  

Response: Success status code. 

 

NFR 

 

NFR1E3 

 

Microservice - an additional project that must be run locally and 

integrated with the game store api for Visa and IBox payments. 

You can investigate possible requests and results of microservice by 

calling the swagger endpoint. 

 

NFR2E3 

Implement full tolerance payment acceptation.  

As the microservice that accepts iBox and card payments can reject up 

to 10 % of the transactions. 

A response validation must be implemented and an additional request 

must be sent in case of failure, the solution must be able to work with all 

responses of the Microservice. 


